The Frobenius and Monodromy Operators for Curves and Abelian Varieties

نویسندگان

  • ROBERT COLEMAN
  • ADRIAN IOVITA
چکیده

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Part I. Definitions of the operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. Definitions of N and F for curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. The monodromy operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. The Frobenius operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. N and F for Abelian varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1. The monodromy operator for Abelian varieties . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. The Frobenius operator for Abelian varieties . . . . . . . . . . . . . . . . . . . . . . . . . 8 3. Equality of the monodromy operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4. Equality of the Frobenius operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1. Review of Fontaine’s rings and Colmez’s integration . . . . . . . . . . . . . . . . . . . . . . 17 2. The universal covering space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3. Integration of differential forms of the second kind along paths . . . . . . . . . . . . 24 4. Explicit description of Fontaine’s monodromy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5. Explicit description of Fontaine’s Frobenius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6. The p-adic integration map commutes with the monodromies . . . . . . . . . . . . . 33 7. The integration map commutes with the Frobenii . . . . . . . . . . . . . . . . . . . . . . . . . 35

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Abelian Monodromy Extension Property for Families of Curves

Necessary and sufficient conditions are given (in terms of monodromy) for extending a family of smooth curves over an open subset U ⊂ S to a family of stable curves over S. More precisely, we introduce the abelian monodromy extension (AME) property and show that the standard Deligne-Mumford compactification is the unique, maximal AME compactification of the moduli space of curves. We also show ...

متن کامل

Monodromy of stable curves of compact type: rigidity and extension

Let M̃g,n, for 2g − 2 + n > 0, be the moduli stack of n-pointed, genus g, stable curves of compact type. For a family C → S of such curves over a connected base and a geometric point ξ on S, the associated monodromy representation is the induced homomorphism π1(S, ξ) → π1(M̃g,n, [Cξ ]) on algebraic fundamental groups. We say that the family C → S is antilinear if its moduli only depend on the non...

متن کامل

On Monodromies of a Degeneration of Irreducible Symplectic Kähler Manifolds

We study the monodromy operators on the Betti cohomologies associated to a good degeneration of irreducible symplectic manifold and we show that the unipotency of the monodromy operator on the middle cohomology is at least the half of the dimension. This implies that the “mildest” singular fiber of a good degeneration with non-trivial monodromy of irreducible symplectic manifolds is quite diffe...

متن کامل

The Hodge-Arakelov Theory of Elliptic Curves: Global Discretization of Local Hodge Theories

Introduction §1. Statement of the Main Results §2. Technical Roots: the Work of Mumford and Zhang §3. Conceptual Roots: the Search for a Global Hodge Theory §3.1. From Absolute Differentiation to Comparison Isomorphisms §3.2. A Function-Theoretic Comparison Isomorphism §3.3. The Meaning of Nonlinearity §3.4. Hodge Theory at Finite Resolution §3.5. Relationship to Ordinary Frobenius Liftings and...

متن کامل

On the Mumford–tate Conjecture for Abelian Varieties with Reduction Conditions

We study monodromy action on abelian varieties satisfying certain bad reduction conditions. These conditions allow us to get some control over the Galois image. As a consequence we verify the Mumford–Tate conjecture for such abelian varieties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999